

PRACTICAL EXPERIENCE CONVERSION PROJECTS FROM Hg- to Mem- ELECTROLYSIS TECHNOLOGY

By Constanza Berckemeyer

Cloro Sur XII Technical Seminar

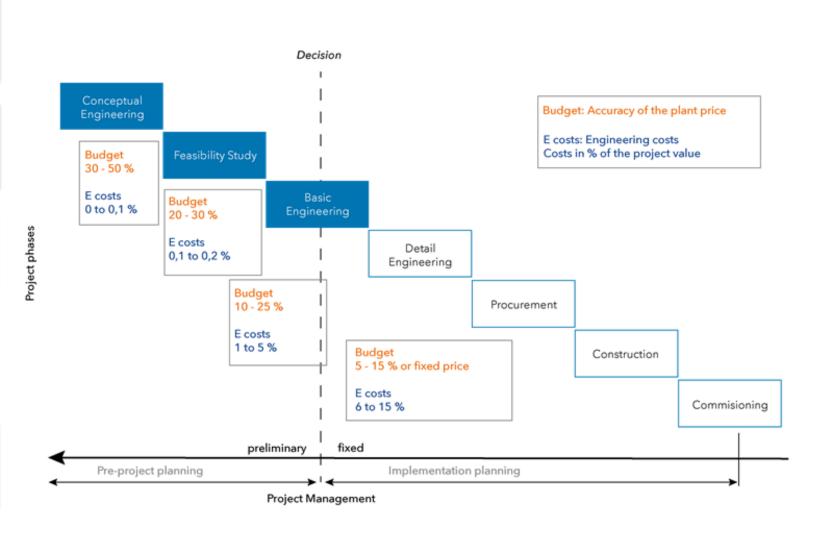
Costa do Sauípe – Bahia/Brazil, November 22nd, 2022

Content

- Introduction of CAC Chemieanlagenbau
 Chemnitz GmbH
- 2. Conversion from Mercury to Membrane
- 3. Selected conversion projects and experiences
- 4. Conclusions and Q&A

CloroSur

Service Portfolio


Feasibility Studies

FEED

Basic and Detail Engineering

Project Management

Authority Engineering

Financial **Engineering**

International Purchasing & Contracting

Provision of Technology

Construction Management

Commissioning

Major Targeted Industries & Market Segments

Chlor-Alkali Solutions

- Brine Treatment
- Electrolysis
- Chlorine Treatment
- Ferric Chloride
- Polyaluminium Chloride

(Green) Power-to-X Solutions

- Water Electrolysis
- eMethanol
- CO₂ Recovery
- Synthetic Fuels / eFuels
 - -- Methanol to Fuel
 - -- Methanol to Jetfuel

Hydrocarbon Solutions

- Refinery Technologies
- **Expandable Polystyrene**
- Butadiene
- Maleic Anhydride
- Cumene
- Natural Gas Underground Storage
- Gas Compressor Station

Chemical Solutions

- Sulphuric Acid
- Production Facilities for Catalysts and Intermediate Products
- Other Batch and Multipurpose Plants
- Nitrogen derivatives

Milestones of CAC in Chlorine Business

1st chlorine plant

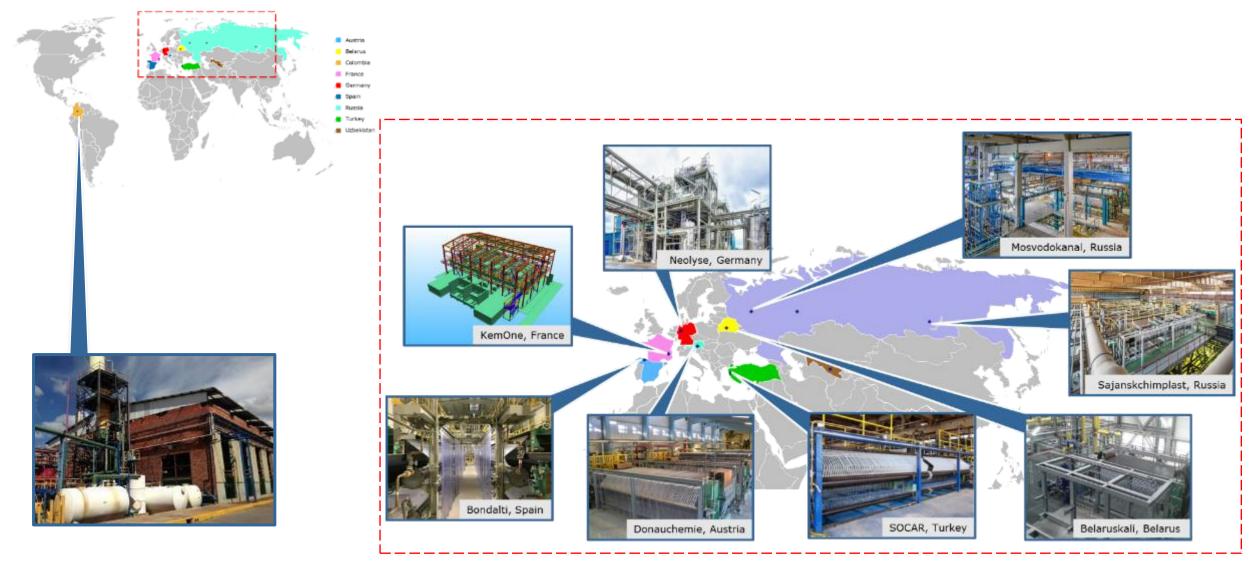
1964 1st chlorine alkali electrolysis (mercury) built for BASF AG, Germany

1st Membrane Electrolysis

1983 1st chlorine plant (membrane) built for United Srichai Chemicals, Thailand

of C-A plants implemented

2000 - 11 projects in 9 countries
 Today 8 conversions projects
 Running Capacity 650.000 t/a Cl2
 > 30 projects in Cl2 industry



CAC's proven track record in the Chlor-Alkali Industry

2. Conversion from Mercury to Membrane

Membrane vs. Mercury process - Advantages

Environmental impact & improvements

- Complete reduction of the mercury emissions to the air
- Exclusion of contamination of mercury to the soil
- No waste water and waste disposal contaminated with mercury
- Significant reduction of electrical power consumption up to 30% less!
- Essential savings of operational costs due to:
 - No further mercury treatment & disposal required
 - Up to 50% less operational staff required
 - Less maintenance costs

Re-usable Equipment

Possible

- ✓ Salt dissolver, tanks, heat exchangers
- ✓ Gas treatment sections (coolers, drying towers, blowers, compressors...)
- ✓ Filters and columns: usually too big, but no problem (more retention time)

Possible but Not Recommended

- X Pumps: not recommended especially brine pumps are usually too big
- X Transformer/rectifier: not recommended different requirements for current & voltage

Based on our experienced...

- Equipment & piping have to be checked carefully
- Cleaning of filters, tanks, pumps etc. has to be done properly with water or with diluted hypo solution
- Check for elementary mercury at low points
- Additional equipment to protect electrolyzer

Location for the conversion

New equipment can be installed:

- Greenfield, next to old plant
- In old building → re-use cell room after decontamination

Decontamination (EuroChlor TSEM 05/311, TSEM 11/378, TSEM 11/389):

- Mercury is everywhere → concrete structure & ground need to be removed or not touched at all
- Sand should not be brought back in place → to be removed & decontaminated
- Protective equipment, cleaning and hygiene is of high importance (TSEM 05/305 Housekeeping Do's and Don't's)

Space requirements:

- Membrane electrolysers require higher cell room
- Space required underneath membrane electrolysers

3. Selected conversion projects and experiences

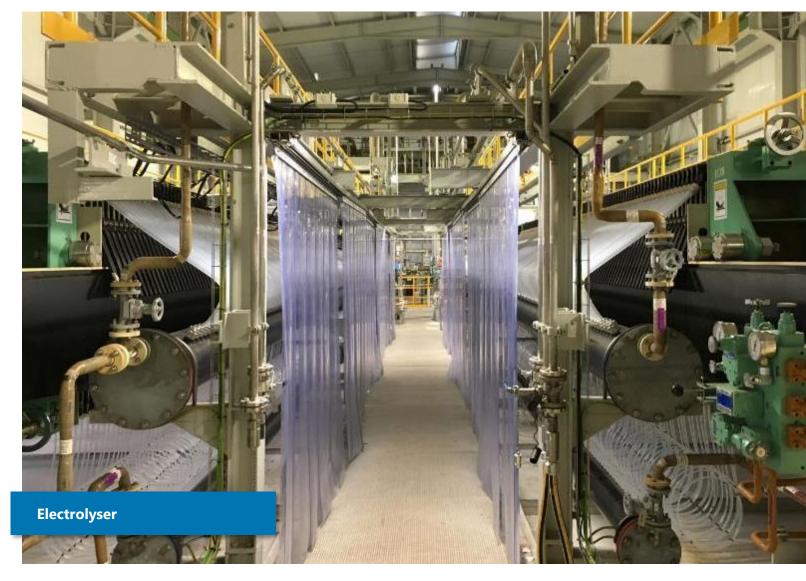
Bondalti Cantabria S.A. (Member of Bondalti Group, Portugal)

Location: Torrelavega, Spain

Plant: Chlor-Alkali Electrolysis

Capacity: 65,000 t/y Chlorine

72,000 t/y Caustic Soda


Contract type: EPC

Services:

- Project Management
- Basic and Detail Engineering
- Procurement and Supplies
- Construction Management
- Construction
- Commissioning and Start-up Assistance
- Training

Project Completion: 2020

Electrolyser Technology: Asahi Kasei Corporation, JPN

Neolyse Ibbenbüren GmbH

(Production Joint Venture between Nouryon/Akzo Nobel Industrial Chemicals GmbH and Evonik AG)

Location: Ibbenbüren, Uffeln, Germany

Plant: Chlor-Alkali Electrolysis

Capacity: 130,000 t/y Caustic Potash

82,000 t/y Chlorine

Services:

Project Management

• Basic and Detail Engineering

Procurement Services

Construction Management

Commissioning and Start-up Assistance

Training

Project Completion: 2017

Electrolyser Technology: Asahi Kasei

Corporation, JPN

Brinsa S.A.

Location: Zipaquirá, Republic of

Columbia

Plant: Conversion of the existing

Chlor-Alkali Electrolysis

Capacity: 29,600 t/y Caustic Soda

27,100 t/y Chlorine

Services:

Project Management

- Basic and Detail Engineering
- Procurement and Supplies
- Construction Supervision Assistance
- Commissioning and Start-up Assistance
- Training

Project Completion: 2017

Electrolyser Technology:

Chlorine Engineers Corporation, JPN

Potasse et Produits Chimiques SAS

Location: Thann, France

Plant: Chlor-Alkali Electrolysis /

Bromine Recovery Unit

Capacity: 68,400 t/y Caustic Potash

43,200 t/y Chlorine 4,000 t/y Bromine

Contract type: EPC

Services:

Project Management

• Basic and Detail Engineering

Procurement and Supplies

Construction Management

Construction

Commissioning and Start-up Assistance

Training

Project Completion: 2016

Electrolyser Technology: Chlorine Engineers

Corporation, JPN

Parallel operation of Hg & Mb electrolysis

Advantage: minimise downtime by establishing

- one combined brine loop for treatment of brine to/from Hg electrolysis as well as membrane electrolysis and
- proper tie-in points for common product handling

Disadvantages:

- requires more time for planning and establishing of tie-in points
- possibly creates unwanted interferences from one system to the other (e.g. back pressure, interlocks, Hg contamination...)
- requires additional step(s) for removal of mercury (precipitation and/or ion exchanger)

Separation of contaminated area

Example:

wooden wall for separation of Hg electrolysers (in operation) and construction site

JSC Sayanskchimplast

Location: Sayansk, Russia

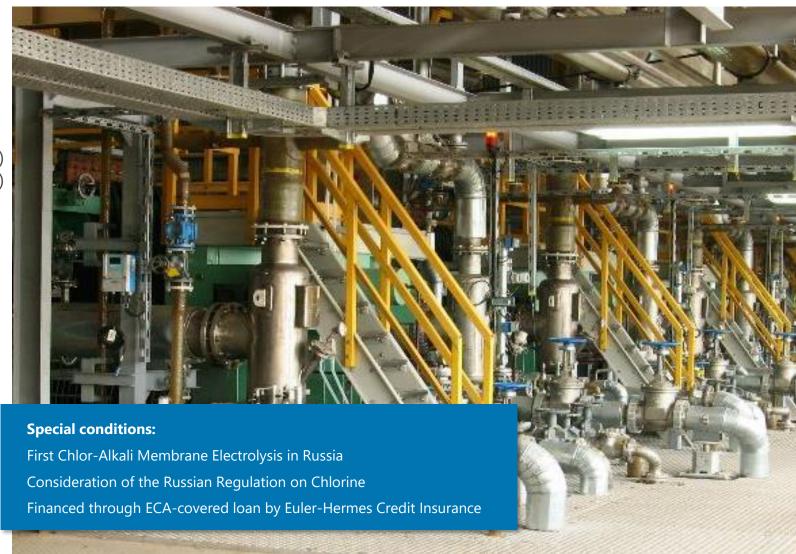
Plant: Chlor-Alkali Electrolysis

Phase 1: ConversionPhase 2: Expansion

Capacity: 169,000 t/y Caustic Soda

150,000 t/y Chlorine (Phase 1) 180,000 t/y Chlorine (Phase 2)

Completion: Phase 1: 2006

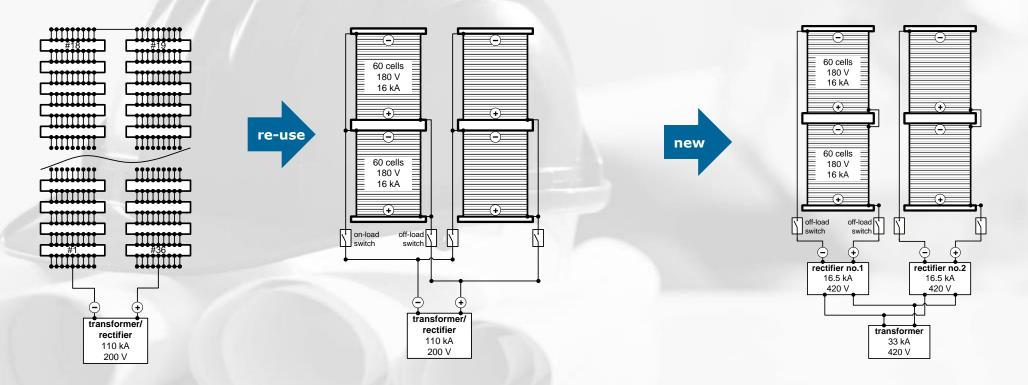

Phase 2: 2013

Services:

- Project Management
- Extended Basic and Detail Engineering
- Design specification for civil works, steel structure, HVAC
- Procurement and Supplies
- Construction Supervision Assistance
- Commissioning and Start-up Assistance
- Training

Electrolyser Technology:

Asahi Kasei Corporation, JPN



Re-use of equipment: Transformer / Rectifier

- Lower Capex
- Less Operational Flexilibity Maintenance

- Traditionally Hg electrolysis requires relatively high current and low voltage
- Area of membrane cells is smaller and current density is smaller than in Hg cells
 - More cells connected in series resulting in higher overall voltages

Donau-Chemie Expansion Project

Location: Brückl, Austria

Plant: Expansion of the existing

Chlor-Alkali Electrolysis

Capacity: 35,700 t/y Caustic Soda

31,600 t/y Chlorine

Services:

- Project Management
- Extended Basic Engineering
- Detail Engineering
- Procurement and Supplies
- Construction Management
- Commissioning and Start-up Assistance
- Training

Project Completion: 2015

Electrolyser Technology: Asahi Kasei

Corporation, JPN

Conclusion & Summary

Conversion from Hg- to Membrane Electrolysis Technology

- Conversion from mercury to membrane technology is beneficial in terms of operating costs and from environmental point of view
- Re use of equipment after decontamination to reduce investment costs
 - Cell room building
 - Brine treatment equipment
 - Transformer rectifier
 - Evaluation and scheduling
- CAC's experience shows alternative solutions depending on each clients specific conditions.

THANK YOU

Constanza Berckemeyer Regional Sales Manager

Phone: +49 371 6899 344

E-mail: Constanza.Berckemeyer@cac-chem.de

Chemieanlagenbau Chemnitz GmbH Augustusburger Straße 34 09111 Chemnitz, Germany

www.cac-synfuel.de | www.cac-chem.de

