Hypochlorite Production
General Information

740 E. Monroe Road, St. Louis, MI 48880
www.powellfab.com
Cinderella
Powell Fabrication & Mfg.

- Sodium hypochlorite production equipment starting in 1964 with filtration since 1983
- 75% of NaOCl in US made on Powell equipment
- 90% in Canada
- Significant production in other countries – Brazil, 80% Mexico, 80% Chile, Taiwan, Philippines, 65% Costa Rica, Saudi Arabia and others
- Chlorine scrubbing and chlorine valve emergency shutoff systems
- Chemical Blending Systems: NaOCl, Caustic, HCl, sulfuric, methanol, ammonia, etc.
- One Shop Point: Engineering, Procurement, Fabrication, Startup, Field Services
Bleach Plant Owners
Powell Equipment Owners
Discussion Topics

- Sodium Hypochlorite Chemistry
- Packed Tower Chemistry
- Oxidation Reduction Potential (ORP/Redox)
- Batch to Continuous Chlorine Scrubbing
- Batch to Continuous Sodium Hypochlorite Production
- Filtration & Hypo Dilution Systems
Terms of Hypochlorite Strength

- Grams per Liter of Available Chlorine
- Grams per Liter of Sodium Hypochlorite
- Trade Percent of Available Chlorine
- Weight Percent of Available Chlorine
- Weight Percent of Sodium Hypochlorite
Production of Sodium Hypochlorite

- \(\text{Cl}_2 + 2 \text{NaOH} = \text{NaOCl} + \text{NaCl} + \text{H}_2\text{O} \)
- Exothermic reaction
- 526 BTU/Pound of chlorine if \(\text{Cl}_2 \) liquid
- 626 BTU/Pound of chlorine if \(\text{Cl}_2 \) vapor
- Slight amount of excess NaOH always remains in solution (typically 3-5 GPL or 0.25% to 0.35% by weight)
- pH for commercial NaOCl (typically greater than 13)
Basis of Production

• 32% or 50% sodium hydroxide is diluted to 17% NaOH for typical commercial strength NaOCl
• Heat of solution removed
• Cl₂ added into solution until excess caustic is reduced to the 3-5 GPL excess caustic range – approximately 13 pH
• Cl₂ addition should always be controlled by ORP (oxidation reduction potential)
• Process can be either batch or continuous
Sodium Hypochlorite Decomposition

- Parameters That Influence Decomposition
 - Concentration
 - Temperature
 - Ionic Strength
 - Transition Metal Ions

- 2nd Order Rate = k_2 [OCl-]^2

- Primary Pathway
 - OCl- + OCl- → ClO\textsubscript{2}- + Cl-
 - OCl- + ClO\textsubscript{2}- → ClO\textsubscript{3}- + Cl-

- Stoichiometry
 - 3OCl- → ClO\textsubscript{3}- + 2Cl-

- Secondary Pathway
 - OCl- + OCl- → O\textsubscript{2} + 2Cl-
 - “uncatalyzed” and “catalyzed”
Unwanted By-Products

- **Bromate** (BrO$_3^-$)
 - Bromide ion in salt used to make Cl$_2$
 - Forms Br$_2$ (Impurity in caustic)
 - Reacts with caustic to form (BrO$_3^-$)

- **Chlorate** (ClO$_3^-$)
 - Inefficiency of chlorine/caustic reaction
 - 3 OCl$^-$ → ClO$_3^-$ + 2 Cl$^-$

- **Perchlorate** (ClO$_4^-$)
 - Decomposition of Chlorate Ion
 - OCl$^-$ + ClO$_3^-$ → ClO$_4^-$ + Cl$^-$
Hypochlorite Production

- Hypochlorite Productions
 - Tower System
 - Batch vs. Continuous
 - ORP Control
Initial Tower Cl₂ & NaOH Reaction

- Cl₂ + 2NaOH = NaOCl + NaCl + H₂O
- 17 - 20% NaOH typical scrubbing solution strength
- High pH reaction >11
Tower Reaction Zones End of Batch

- Top of tower – High pH (NaOH – NaOCl – NaCl)
- Center of tower – pH > 11 (NaOH – NaOCl - NaClO3 - Cl2)
- Bottom of Tower-Low pH (NaOCl – NaClO3 – NaCl – Cl2)
Ending Batch Reactions

- $\text{Cl}_2 + \text{NaOCl} + \text{H}_2\text{O} = 2\text{HOCl} + \text{NaCl}$
- $2\text{HOCl} + \text{NaOCl} = \text{NaClO}_3 + 2\text{HCl}$
- End reaction is: $3 \text{NaOCl} = \text{NaClO}_3 + 2 \text{NaCl}$
- Occurs in low pH regions at bottom of tower
Packed Tower Advantages

- Very good chlorine reactor
- Low gas pressure drop
- High inert gas loading
- Predictable results
- Low PPM chlorine outlet concentrations
Packed Tower Disadvantages

- Packed towers - Poor NaOCl production units.
- Low excess caustic less than 2% - 3% by weight produces high NaClO3
- NaOCl side reaction to NaClO3 creates more salt, potentially plugging the tower packing.
- Each 1 gpl of NaClO3 loses 2.1 GPL of NaOCl
- Packed towers are limited in strength of NaOCl due to NaClO3 side reactions creating NaCl and high excess caustic
Production Losses

- Typical packed towers produce 135-155 gpl NaOCl with 12-15 gpl excess NaOH and 8-10 gpl NaClO₃
- High quality hypo is 135 -155 gpl NaOCl, 3 gpl excess NaOH and 1.0 gpl NaClO₃
- 25,000 MT of hypo per year of high quality hypo versus packed tower hypo equals a savings of 305 tons of Cl₂ and 532 tons of NaOH @ 135 gpl
Production Improvements

- Convert batch towers to continuous
- Operate towers at higher excess caustic such as 3-4% excess NaOH or greater
- Move hypo production downstream of chlorine towers
- Allows use of cooling tower water in lieu of chilled water for towers and hypo production
Production Improvements

- Allows production of up to 16.5% by weight (200 gpl available chlorine)
- Reduce Excess NaOH to as low as 2-3 gpl
- Reduce NaClO3 to as low as 1 gpl
- Reduce Operator Labor (elimination of 1 or more operators per shift)
- Reduce Shipping Cost
ORP Instrumentation

- ORP for chlorine scrubbers and hypo production
- Successful patented electrodes developed by Dow in 1960’s
- Originally sold under license by Powell since 1963
- Voltage increases as sodium hydroxide decreases
ORP Control

Graph: ORP vs wt% NaOH
Tower Design Changes

- Add ORP electrodes, indication and alarms
- Location of electrodes depend on process design
- Convert from batch towers to continuous system
- Requires level control and ORP control for automatic caustic addition
Hypochlorite Prod. Downstream of Towers

- Towers are continuous
- Towers operate at high excess NaOH levels
- Towers have low NaClO3
- No chilled water
- Safer operation
Advantages

- Continuous Equipment to chlorinate tower hypo
- Uses scrubber solution from 3-4% excess NaOH and higher to maximum of 21% caustic
- Liquid and/or gas (wet or dry) chlorine for final chlorination
- Cooling Tower Water during production
- Chilled water used for some storage applications
Additional Advantages

- Hypo production during cell room maintenance if liquid chlorine is used
- Reduced shipping costs due to higher strength
- High turn down of production such as 250 ton/day down to 25 ton per day
- Totally automatic with extremely good repeatability of bleach strength and excess caustic
Typical Real Case

100 Ton per day Bleach Unit

<table>
<thead>
<tr>
<th></th>
<th>Junio 27/03 al Oct 10/03</th>
<th>Oct 08/03 al Dic 9/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de Datos</td>
<td>201</td>
<td>189</td>
</tr>
<tr>
<td>NaOCl</td>
<td>146.031</td>
<td>146.241</td>
</tr>
<tr>
<td>NaCl</td>
<td>145.649</td>
<td>128.729</td>
</tr>
<tr>
<td>NaCl Teórico</td>
<td>114.640</td>
<td>114.810</td>
</tr>
<tr>
<td>Sobrante NaCl</td>
<td>31.01</td>
<td>13.92</td>
</tr>
</tbody>
</table>
Typical Real Case

- Difference 16.92 gr Salt/lt bleach
- Equivalent to 32.33 gr bleach/lt
- 100 ton per day bleach production means over consumption 2.57 ton chlorine and 2.9 ton dry caustic
Next Generation Hypochlorite Production

Powell HSLS Hypo Process Diagram
HSLS Hypo Solution
Traditional Hypo vs. HSLS Hypo

<table>
<thead>
<tr>
<th>Tradition Hypo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOCl</td>
<td>NaCl</td>
</tr>
<tr>
<td>Wt. %</td>
<td>Wt. %</td>
</tr>
<tr>
<td>30.0%</td>
<td>X</td>
</tr>
<tr>
<td>25.0%</td>
<td>X</td>
</tr>
<tr>
<td>20.0%</td>
<td>X</td>
</tr>
<tr>
<td>16.5%</td>
<td>13.0%</td>
</tr>
<tr>
<td>15.0%</td>
<td>11.9%</td>
</tr>
<tr>
<td>13.0%</td>
<td>10.4%</td>
</tr>
<tr>
<td>10.5%</td>
<td>8.3%</td>
</tr>
<tr>
<td>8.0%</td>
<td>6.3%</td>
</tr>
<tr>
<td>6.0%</td>
<td>4.7%</td>
</tr>
<tr>
<td>3.0%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HSLS Hypo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOCl</td>
<td>NaCl</td>
</tr>
<tr>
<td>Wt. %</td>
<td>Wt. %</td>
</tr>
<tr>
<td>30.0%</td>
<td>8.5%</td>
</tr>
<tr>
<td>25.0%</td>
<td>7.1%</td>
</tr>
<tr>
<td>20.0%</td>
<td>5.7%</td>
</tr>
<tr>
<td>16.5%</td>
<td>4.7%</td>
</tr>
<tr>
<td>15.0%</td>
<td>4.3%</td>
</tr>
<tr>
<td>13.0%</td>
<td>3.7%</td>
</tr>
<tr>
<td>10.5%</td>
<td>3.0%</td>
</tr>
<tr>
<td>8.0%</td>
<td>2.3%</td>
</tr>
<tr>
<td>6.0%</td>
<td>1.7%</td>
</tr>
<tr>
<td>3.0%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>
Chemistry Advantages

- Reduction in ionic strength of the solution:
 - Slower decomposition resulting in a longer half-life
 - Less chlorate ion formation
 - Less perchlorate ion formation
 - Less oxygen formation
Chlorate Formation

Diluted HSLS Hypo vs. Traditional Hypo @ 90°F

- Strength, wt. % NaOCl vs. Sodium Chlorate, GPL
- Days vs. Sodium Chlorate, GPL
- Graph showing comparison of Diluted HSLS Hypo and Traditional Hypo over 30 days.
What are the Production Advantages?

- Reduced chlorine and caustic consumption per liter produced
- Recovery of salt for raw material savings
- Improved stability and reduced weight allow more flexibility of logistics
 - Lower specific gravity will reduced the overall weight load for shipment of same volume
 - Increased volume per shipment for same load weight
Salt Savings for HSLS Hypo

- Approximately 1,650-1,815 kg. of NaCl consumed to produce 1,000 kg. of chlorine
- 1,000 kgs. of chlorine reacted to 30% NaOCl = 615 kg. of NaCl savings by reclaiming salt
- 615 kg of reclaimed salt = 34-37% needed for original electrolysis
- Reclaimed salt is very pure; if returned back to chlor-alkali plant only requires secondary brine treatment
Salt Purity

<table>
<thead>
<tr>
<th>Element / Compound</th>
<th>mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>99.85%</td>
</tr>
<tr>
<td>Moisture</td>
<td>3.85%</td>
</tr>
<tr>
<td>Insolubles</td>
<td><0.005%</td>
</tr>
<tr>
<td>Al</td>
<td><1.6</td>
</tr>
<tr>
<td>Ba</td>
<td><0.17</td>
</tr>
<tr>
<td>Ca</td>
<td>0.39</td>
</tr>
<tr>
<td>Mg</td>
<td><0.3</td>
</tr>
<tr>
<td>Sr</td>
<td><1.6</td>
</tr>
<tr>
<td>Fe</td>
<td><0.03</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.67</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>N/D</td>
</tr>
</tbody>
</table>
HSLS Hypo Shipping Advantages

- HSLS Hypo is stored on producers site at 10°C.
- 19 M3. tank truck load of 30% wt. equals 52 M3 of 13% wt.
- High dilution ratio allows for shipment flexibility.
 - Shipment of 30% wt.
 - Economically ship 2.75 time farther
 - Increase total delivered volume by 2.75, diluted at distribution center or customer site
 - Shipment of diluted product
 - Increased stability allows for decreased shipping strength
- One tank truck load (10 M3) of 13.0% diluted HSLS Hypo contains 1,800 kg. less salt than tradition hypo.
HSLS Hypo Shipping
HSLS Hypo Shipping
HSLS Hypo Summary

- HSLS Hypo with lower salt concentration offers a product that is more stable and lighter.
 - Greater stability means less sodium chlorate and perchlorate formation during decomposition.
- Reclaim salt to improve chlor-alkali plant efficiencies.
- HSLS Hypo can improve the shipment economics by:
 - Increasing shipping radius from the plant
 - Lighter product therefore more hypo per load
Powell Contact Information

Powell Fabrication & Manufacturing, Inc.
740 E. Monroe Road St. Louis, MI 48880
Ph: 989.681.2158 Fax: 989.681.5013
E-mail: info@powellfab.com
Website: www.powellfab.com